IMPROVED INDOOR ENVIRONMENT WITH NEW TECHNOLOGY

Andy Drysdale Danish Technological Institute

Micro Structure Workshop

Tuesday 9 May 2006

Andy Drysdale, Danish Technological Institute MSW 2006 /ästerås, Sweden 9 May 2006

Agenda

- The MONTIE initiative an introduction and a little background
- · Activities and summary of results so far
 - The benefits of improved indoor environment (IAQ)
 - The link between IAQ, HVAC (Heating, Ventilation and A/C) and sensors
 - More about sensors for better IAQ
- Barriers and challenges

The aim of this presentation is to give an overview of the MONTIE initiative, and present its current status

....and to inspire innovative thoughts for possible new applications for (MEMS) sensors!

What is the MONTIE initiative?

Multi-sensors and Other New Technology for Improved indoor Environment in buildings

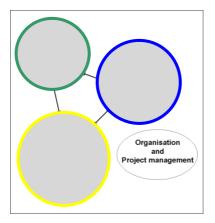
- A consortium of Nordic partners
- Funding from the Nordic Innovation Centre 2004 2006
- Increase focus on Indoor Air Quality (IAQ). Spread knowledge about its importance
- Address the current, and future uses, of advanced multi-sensors
- Technological developments to support improved HVAC systems
- Convert expert academic knowledge into practical applications and use.

Andy Drysdale, Danish Technological Institute

The partners in MONTIE

- Danfoss A/S (DK)
- Hök Instrument AB (SE)
- Infineon Technologies SensoNor A/S (NO) (infineon
- The Finnish Association of HVAC Societies (FINVAC) (FIN)
- Finnish Society of Indoor Air Quality and Climate (FiSIAQ) (FIN)
- SINTEF IKT (NO)
- SINTER

- The Technical University of Denmark International Centre for Indoor Environment and Energy (DK)



What are the goals of the MONTIE initiative?

Main activities

Information dissemination about:

- The importance of IAQ
- The advantages gained from using microsensors and other new technology

Increased information/awareness will

- Initiate coherent efforts to increase the level of knowledge about IAQ
- Initiate and boost the number of IAQ and IAQ related - development activities
- Increase business and commercial export opportunities

Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

Main activities so far

www.rehva.com/workshops/index.html

www.teknologisk.dk/montie

Main activities so far

Clima 2005

- Key -note and short presentations, poster sessions and workshops on scientific trends and practical developments in HVAC technologies
 Included a MONTIE workshop presenting MONTIE ideas and ambitions

MONTIE workshop programme

Summaries of state-d -the-art (Nordic) technology on sensors

Technological advances for controlling indoor environment

- Applications of these sensors for the measurement and demand based control of IAQ
- Discussion forum (more than 40 participants) to discusses the **fu**ure needs for development and dissemination.

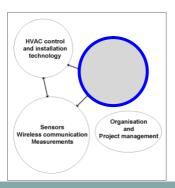
www.rehva.com/workshops/index.html

· Focus on "State-of-the-art" technology. Key -note presentations on user-driven issues

and invited presentations on technology -driven issues.

Programme

- IAQ, sensors and measurements, wireless communication and other new technology
- Intelligent HVAC installations and installation technology, including the use of sensors and coupling with security aspects
- New business opportunities and challenges
- Innovative solutions


www.teknologisk.dk/montie

Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

THE BENEFITS OF IMPROVED INDOOR ENVIRONMENT

AIR QUALITY THERMAL (ACOUSTIC) (LIGHT)

The benefits of improved indoor environment (IAQ)

The importance of indoor air quality (IAQ) in buildings is indisputable.

People spend about 90% of their time indoors (at work, at home, transport)

Intake for a person per day:

- 1 kg food
- 2 kg liquid
- 15 kg air

Comfort-Productivity costs:

• People 100

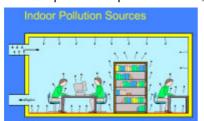
- Maintenance 10
- Financing 10
- Energy 1

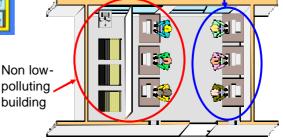
In typical office buildings

20 - 40 % of occupants have SBS symptoms

20 - 40% find the IAQ unacceptable (even though existing ventilation standards are met)

Field studies show substantial rates of dissatisfaction in practice

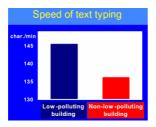

Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

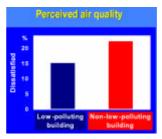

The benefits of improved indoor environment (IAQ)

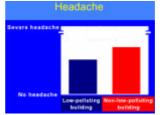
IAQ impacts occupants' comfort, health and performance

Experimental set-up at DTU

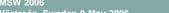
Low polluting building







The benefits of improved indoor environment (IAQ)



Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

The benefits of improved indoor environment (IAQ)

Outdoor air rates:

3 L/s/person (0.6 h⁻¹) 10 L/s/person (2 h1) 30 L/s/person (6.0 h⁻¹)

Experimental set-up at DTU

The benefits of improved indoor environment (Thermal)

General thermal comfort

Personal factors

Environmental factors

- Clothing
- Activity
- Air temperature
- · Radiant temperature
- · Air velocity
- Humidity

Local thermal comfort

- Floor surface temperature
- Vertical air temperature difference
- Draught (mean air velocity, turbulence, air temperature)
- Radiant temperature asymmetry (heated/cooled ceiling, warm/cool wall)

10 % decrease in dissatisfied will increase performance by 1.5 %

Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

The benefits of improved indoor environment (IAQ)

Potential savings and productivity gains are enormous

Macroeconomic estimation of productivity gains of improved IEQ

Source of productivity gain	Potential annual health benefits	Potential US annual savings or productivity gain (1996 USD)
Reduced respiratory illness	16 – 37 mill avoided cases of common cold or influenza	6 – 14 billion USD
Reduced allergies and asthma	18% to 25% decrease in symptoms for 53 million allergy sufferers and 16 million asthmatics	1 – 4 billion USD
Reduced SBS symptoms	20% to 50% reduction in SBS symptoms experienced by 15 mill workers	10 – 30 billion USD
Improved worker performance from changes in thermal environment and lighting		20 – 160 billion USD
Total cost of energy in US commercial buildings		70 billion USD

THE LINK BETWEEN IAQ **HVAC** (Heating, Ventilation and A/C) AND SENSORS

Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

The link between IAQ, HVAC and sensors

Traditional building HVAC control strategies are often insufficient to provide a satisfactory indoor environment

Intelligent buildings with new, promising strategies are emerging

- Reliable, accurate and inexpensive sensors to measure key IAQ parameters are becoming available
- Processes such as "Constant Commissioning", an ongoing process to resolve operating problems, improve comfort, optimize energy use and identify retrofits

..... they need to be combined with methods of using these measurements in HVAC control strategies.

Legislation, i.e. the EU Energy Performance of Buildings Directive may help

- Integrated built-in sensors for diagnostics and inspection purposes
- Continuous calculation of energy consumption
- Explicitly specifies that reduction of energy consumption should not compromise occupants comfort, health and productivity.

norden Mix

Future needs for HVAC control strategies

- Improvements to existing sensors and some features of new sensors:
 - Low cost, small size sensors integrated into HVAC/IAQ system components
 - Self-calibrating, self-testing, self-diagnosing, and self-reporting sensors
 - Sensors that automatically detect the need for a measurement
 - Low power consumption
 - Built-in algorithms for diagnostics, service and inspection routines
 - Reliable. Low-drift,
 - Running calculation of energy consumption
 - Incorporation of low-cost processing and memory on sensor elements to generate information from raw data and to store that information, reporting data only when anomalies occur
 - Easy to implement (plug-and-play). Better system integration
 - · Communication (including a wireless option to reduce installation costs)
 - Feedback to user regarding energy consumption and indoor environment status
 - Long life (> 10 years)
 - Documented system effects and pay -back
 -the list is long

All these aspects are related to sensors and measurements

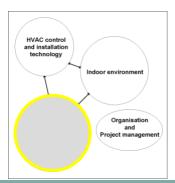
Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

Future needs for HVAC control strategies

Technology drivers:

- Automotive industry
- Aerospace industry
- Military applications
- High end buildings
 - concert halls, conference rooms....

But comfort and prestige in buildings and homes could also be a driver



MORE ABOUT SENSORS FOR **BETTER IAQ**

Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

What do we want to measure - and how well?

Main IAQ parameters:

- Temperature
- Carbon dioxide concentration
- Relative humidity
- Pressure variations

Next step

- Particles (dust, pollen ...)
- Volatile organic compounds (VOC's)
- Other gases

IAQ Sensor Roadmap
Further integration of services for VOC, particles and other parameters Micro system incl. CO ₂ , T, p and RH sensors
Wireless - Battery operated
Wireless – new energy sources
Discrete CO., T and RH sensors
2000 2005 2010 2015

	CO ₂ concentration (ppm)	Relative humidity (%)	Temperature (°C)	Pressure variations (Pa)
Operating range	0-3000	10-90	0-40	0-1000
Overall accuracy	+/- 50	+/- 5	+/- 0.5	+/- 100
Resolution	5	1	0.1	1
Cross sensitivity	<2-3%	<2-3%	<2-3%	<2-3%
Response time	60 sec	120 sec	60 sec	0.01-10 Hz

Tentative specifications of the multi-sensor in terms of measurement performance

Wireless monitoring and control systems

- Large number of nodes → wireless solutions are required
- · Low-complexity and low power protocol
- · Low system cost
- · Sensor nodes have typically only limited amount of data to send

 - Very low raw data rate (few kBits/s)
 Very small amount of data (couple of Bytes)
- Short to medium ranges (meters / tens of meters)
- · Sensor nodes remain "quiet" in long periods of time
- Very long lifetime requirements
 - up to several years
 - unattended operation

Andy Drysdale, Danish Technological Institute MSW 2006 /ästerås, Sweden 9 May 2006

A note about short range communications Differentiation Power Consumption Range Networking 1000m <u>Proprietary</u> Complexity • Throughput •Gaming •PC Peripherals Reliability Audio Interoperability •Meter Reading 100m Integration ZigBee/802.15.4 Building Mgt. Automotive Building Automation Home Control **Bluetooth** Industrial Wi-Fi/802.11 10m Logistics Bluetooth Sensors •PC Networking Security Home Networking •PC Peripherals
•PDA/Phone Video Distribution 1m Data Rate 1k 10k 100k 1M 10M (bps) norden Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006 Nordic Innovation Centre

Wireless monitoring and control systems

ZigBee as a suitable candidate?

Standard		ZigBee [™] / IEEE 802.15.4	WiFi™/ VEEE 802.11b	BlueTooth TM / IEEE 802.15.1
Application focus		Monitoring & Control	Well, Email, Video	Ad hoc cable Replacement
Stack Size (kBytes)		< 128	1000 -	250 +
Battery Life (days)		100 – 1000 +	0.5 - 5	1 - 7
Network Size (#nodes)		~Unlimited (65536)	Many	7
Bandwidth (kbps)		250	11 000	1000
Range (meters)		100 +	100	10 +
Target BOM costs	1	< \$ 3	9	\$ 5

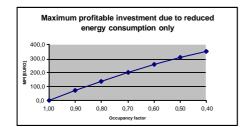
Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

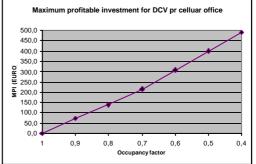
Examples of what sensor technologies are available

- IR technology offers highly sensitive, selective and reliable gas sensors
 - . MEMS based IR sources, IR detectors, tunable optical filters, and complete gas and humidity sensors are available
 - IR gas sensors are still expensive due to large size, expensive components, packaging, and drift compensation. Higher level of integration is required
- A DOE (Diffractive Optical Element) based CO₂ sensor
- A MEMS based photo-acoustic gas sensor for CO₂
- Electro-acoustic MEMS-implemented CO₂ sensors

Why **MEMS** for multi-sensors?

- MEMS based sensors are by their small size and fabrication and packaging technology potentially suitable for multi-sensor integration
- · Temperature sensors are easily implemented as an integral part of standard electronics
- · Multi sensors are often based on integration of several sensors at the same electronic boards
- MEMS devices are potentially easy to integrate since the are small and often based on the same principles (piezoresistive capacitive and optical)
- · MEMS also opens for a higher degree of monolithic integration
 - . Temperature sensors as part of the gas sensor chip




Is "demand controlled ventilation" the solution

Possible to calculate the maximum profitable investment:

- · Due to reduced energy use only
- · Due to reduced energy use, installation cost and reduction of technical area

Energy use, installation cost and reduction of technical area

The impact increases with increased electrical energy cost

- Electrical energy cost of 0.25 EURO/kWh
- MPI is 700 EURO per celluar office

Andy Drysdale, Danish Technological Institute ästerås, Sweden 9 May 2006

Is "Personalised ventilation" the solution

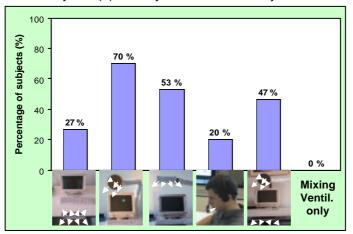
Large differences between occupants in regard to:

- **Preferred Temperature**
- Air movement sensation
- Clothing insulation level
- **Activity level**
- Air quality perception

Personalized ventilation

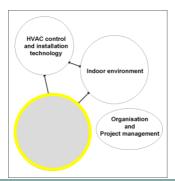
Clean air is supplied to the breathing zone Individual control & preferred environment:

- airflow direction
- preferred temperature
- preferred velocity: 0.2 m/s 1.8 m/s


MSW 2006 Västerås, Sweden 9 May 2006

Is "Personalised ventilation" the solution

Which system(s) would you like to have on your desk?


Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

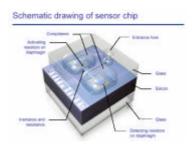
Next step "Personalised heating and ventilation" Perceived Air Quality Thermal Comfort General 35% 30% 25% 20% 15% satisfaction Reference 26°C with 22°C with 22°C control control Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006 norden Nordic Innovation Centre

EXAMPLES OF IAQ SENSORS THAT HAVE BEEN IDENTIFIED **DURING THE PROJECT**

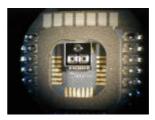
Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

Example - IAQ sensors in the Nordic area

Hök Instrument Q-AIR wallmountable sensor for measuring CO₂, temp, RH



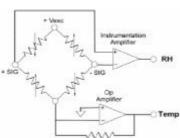
SenseAir infrared CO₂ sensor for embedded solutions



Other examples of IAQ sensors

Sensor chip area: 3 x 3 mm. Packaged in a standard ceramic package

MSW 2006 Västerås, Sweden 9 May 2006



Other examples - MEMS multisensor from the aerospace and industry sector POLYMERIC SENSING LAYER PIEZORESISTOR STRAIN GAUGE PASSIVATION LAYERS

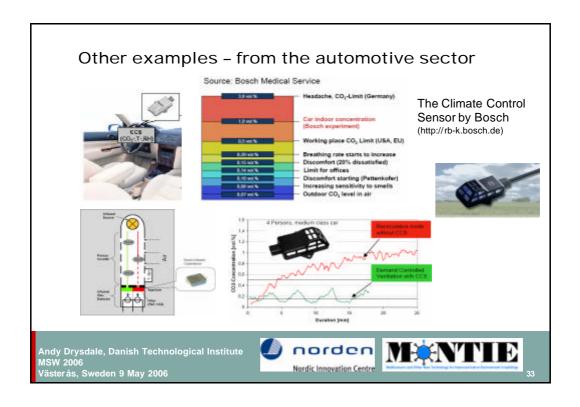
Environmental monitoring and control

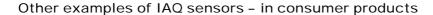
Avionics and aerospace

Dehumidification, industrial drying

HVAC

Precision instrumentation


Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006



CONTACT PAD

DIE SIZE: 2 mm X 2 mm

Plug-in CO2 sensor modules Korea is catching up...

Clock radio + demand controlled ventilation from Korea...

Clean Air Tec Fair, Korea Oct.5-7, 2005

Andy Drysdale, Danish Technological Institute MSW 2006 Västerås, Sweden 9 May 2006

Nordic Innovation Centre

norden MXNI)

Future needs for HVAC control strategies

Barriers:

- Conservatism about technical installations in buildings HVAC components and installations traditionally have a long lifetime
- A lack of understanding of how complex building automation systems interact with their environment
- · Degree of adoption and implementation is slow
- Often limited to flagship buildings. Demonstration projects are important but specific business cases are better
- Unclear commercial potential and costs. Is it possible to provide convincing evidence to investors and end users?
 - (Can investments be justified? How do we calculate/document payback time?)
- Can you provide value for money to the end users?

"Better" sensors and solutions are necessary

There is a worldwide interest and future market for IAQ multisensors

Some challenges

- Low cost will enable several sensors even in one room, reducing difficulties in the selection of sensor location
- Low power will fulfill battery demands or alternatives to batteries
- On-chip diagnostics of system function and performance is important
- Measurement aspects: Cross sensitivity (influences from temperature, humidity, dust), poisoning, long term drift

The MONTIE initiative in 2006 will focus on trends and drivers for innovative HVAC installations and control techniques

Andy Drysdale, Danish Technological Institute NSŴ 2006 Västerås, Sweden 9 May 2006

Thanks to the following for most of the information in these slides

Indoor environment

Bjarne Olesen, Jørn Toftum, Arsen Melikov, DTU/ICIEE

Sensors

Hans Martin, SenseAir Per Gløersen, SensoNor Bertil Hök, Hök Instrument Peter Østbø, Ralph Bernstein, SINTEF Jan Nielsen, DTI

HVAC systems, wireless communication etc.

Johnny Holst, NTNU Jens Møller Jensen, Peter Gravesen, Danfoss Mads Mysen, SINTEF Bygforsk Per Anker Jensen, DTU/BYG

Thank you for your attention!

For further information contact Andy Drysdale Danish Technological Institute Kongsvang Alle 29 andy.drysdale@teknologisk.dk

www.teknologisk.dk/montie

